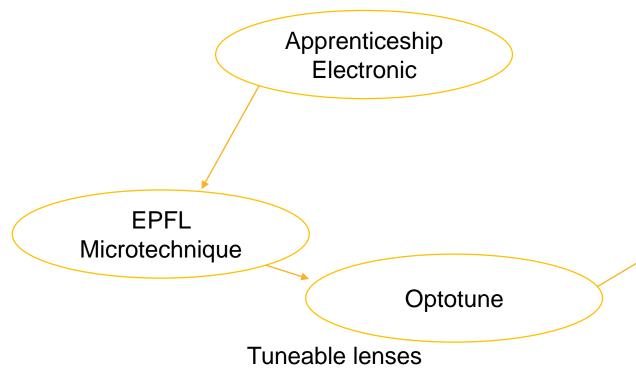


INERGIO

"It's all about clean, light and efficient power"

Luc Conti, CTO
Luc.conti@inergio.ch

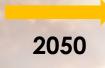


Intro

- 1. Intro Luc and Inergio
- 2. Technology explanation
- 3. Market study
 - 1. Focus on off-grid mid power
 - 2. Comparison with actual solutions
 - 3. Off-grid market sizes analysis
 - 4. Off-grid market structures

Intro -Luc

- Adapt product for consumer market (smartphones)
- Make mass production line
- Low cost
- Big investement
- High pressure from customer



Inergio

- CTO
- Develop a fuel cell technology
- Bring it into a product

Global carbon emission to ZERO

Climate change is turned to a true reality

Profound change of energy systems

Hydrogen and Fuel Cell are part of the solution

Nations and Corporations have invested

SUSTAINABLE ENERGY

EU wants to spend \$1 trillion to help make it climate neutral by 2050

UBLISHED WED. JAN 15 2020-8:05 AM EST | UPDATED WED. JAN 15 2020-8:05 AM EST

NREL To Lead New Lab Consortium To Enable Low-Cost Electrolyzers for Hydrogen Production Oct. 8, 2020

Today, on National Hydrogen and Fuel Cell Day, the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) announced up to \$100 million, subject to appropriations, for two new national laboratory consortia to advance hydrogen production and fuel cell technologies research and development (R&D) in support of EERE's H2@Scale vision.

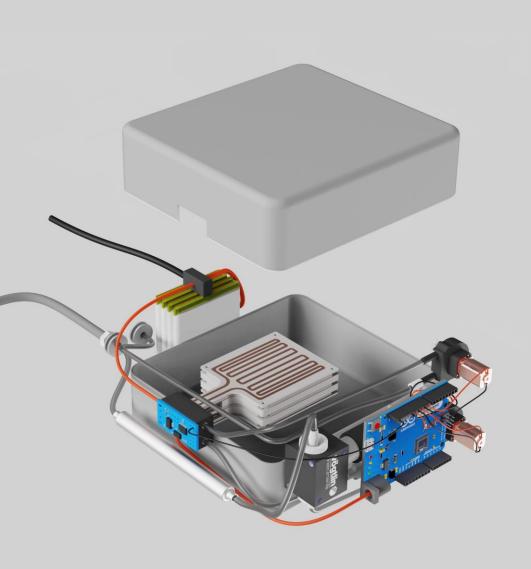
\$2.5 trillion

2050

CNBC

South Korea's energy future

Fuel cell technology key to


How Toyota is helping Japan with its multibillion-dollar push to create a hydrogen-fueled society

By Tim Hornyak

Yet, there are several challenges to be solved...

♦ INERGIO Innovative fuel cell technology

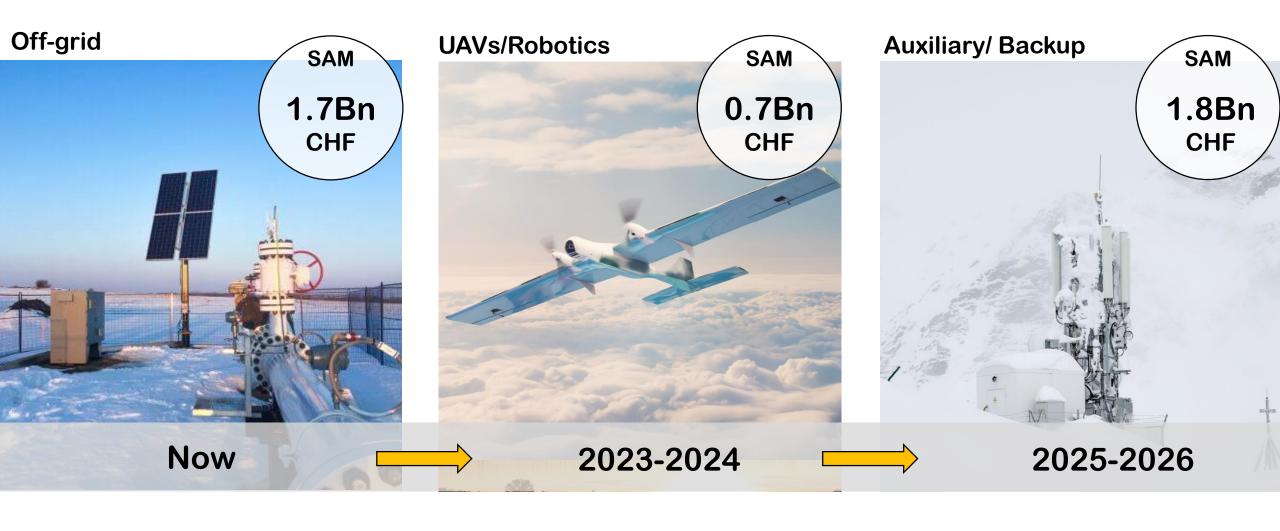
Compact and light

250 W/kg

3.6 kWh/kg

Fuel Flexible

Today 2030 LPG 100% 60% Lower CO2 emission



Modular and Scalable

From 20 to +1000 W

From Remote applications to UAVs to Backup systems

5-8% CAGR

10 Lol/PoC

15-30% CAGR

2 LoI

8-15% CAGR

and s

Dr. Mahmoud HadadCEO & founder

- ✓ PhD EPFL in Material science and engineering
- √ 6 years of experience in microengineering
- √ 3 years of business development

INERGIO team

Dr. Inès Richard R&D team

Payam Vahdati R&D team

Eric RomersaBusiness dev team

Nicolas Rospars R&D team - Intern

Gaëlle Wavre R&D team- Intern

Advisors

Technical

Prof. Juergen BruggerEPFL Full Professor (LMIS1)

Prof. Paul Muralt EPFL Full Professor

Dr. Sebastian ReuberFounder of Eneramics (fuel cell Co.)+10 years of experience in Fuel cell sys

Business

Mr. Pascal Dutheil✓ Veteran Innosuisse coach

Mr. Jim Lewis - Former CEO

✓ Former CEO of 4 deep tech start-up firms in CH and USA, include 2 exits

Luc Conti CTO & co-founder

- ✓ Msc. EPFL microengineering
- √ 4 Years experience in scale-up startup
- ✓ Strong experience in product industrialization

One of world's most efficient, clean and lightweight power sources

60-100%

Less CO₂ emission

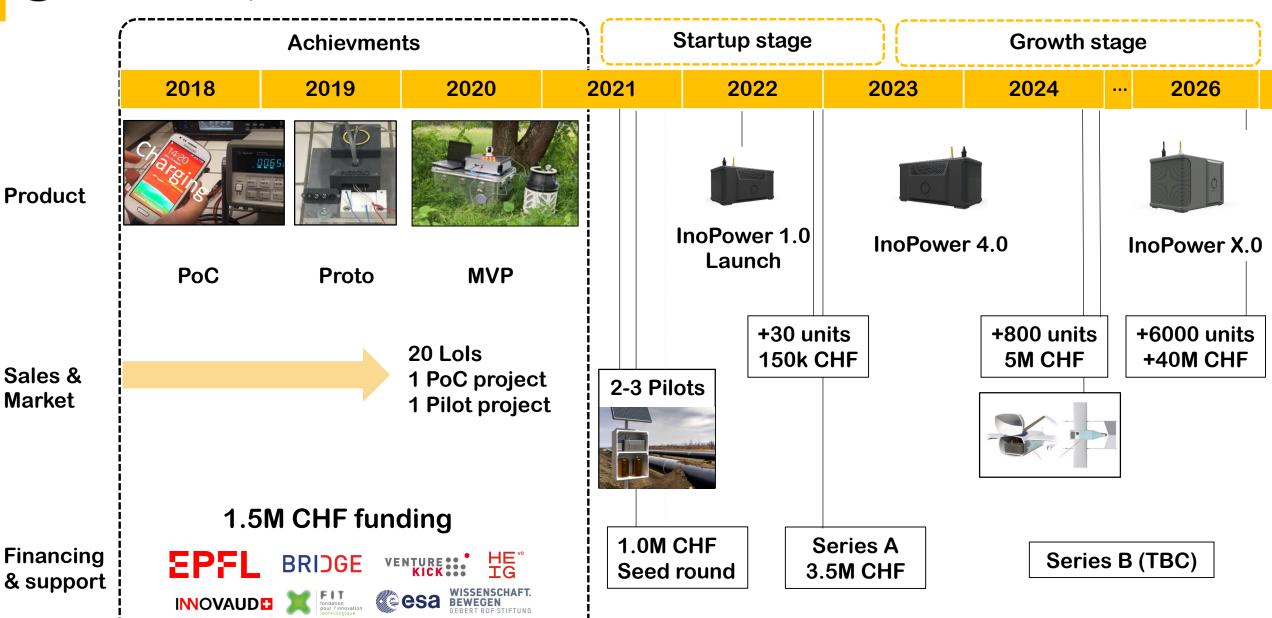
X 20

More autonomy than Li-batteries

+4 Bn

Serviceable Market (SAM)

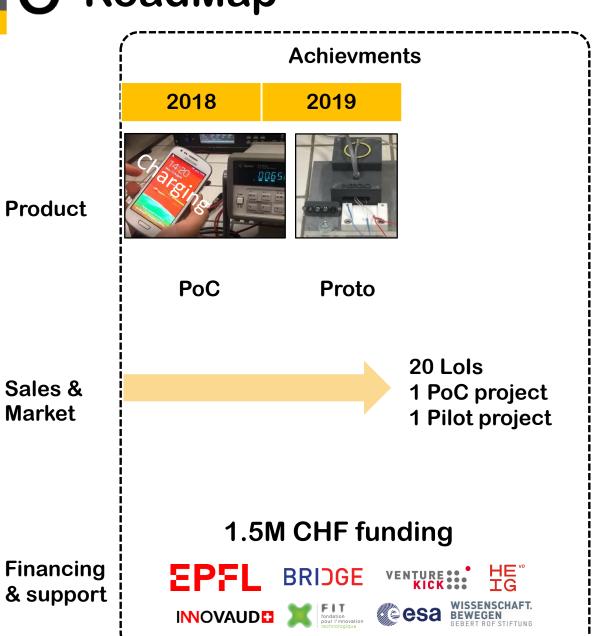
Our supporters



RoadMap

Sales &

Market


RoadMap

Product

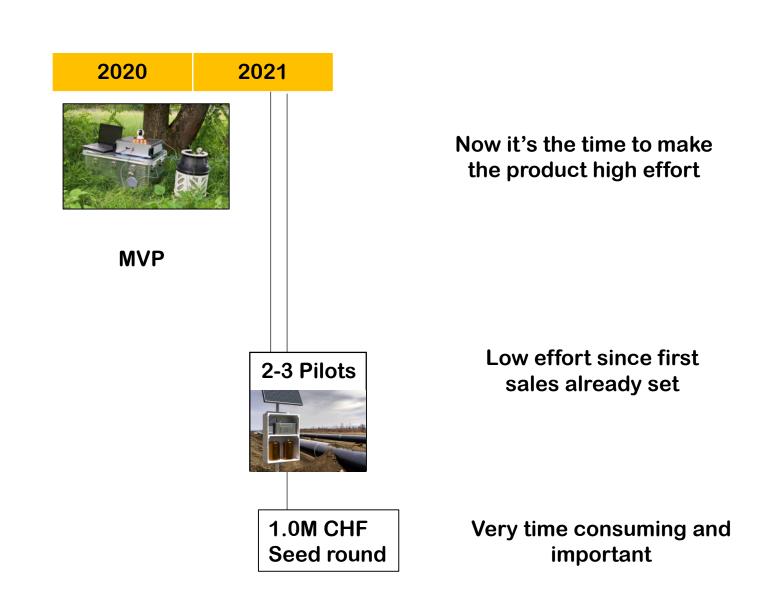
Sales &

Market

Financing

Just to proof the concept but do not make a product. Low effort

> Very important since it define the product specs


Very time consuming and important

CoadMap

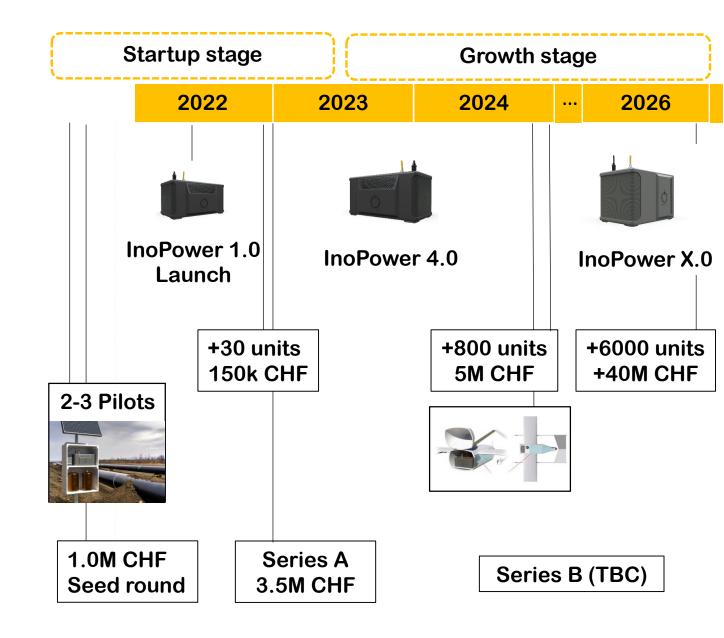
Product

Sales & Market

Financing & support

CoadMap

Product

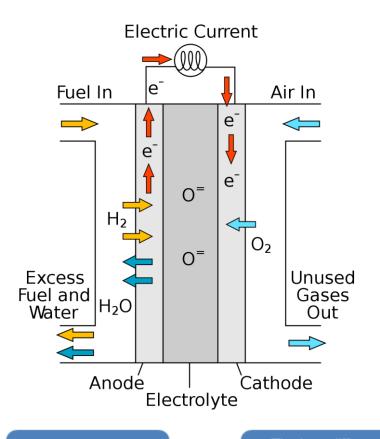

Low effort since only modifications of original product

Sales & Market

Again high effort since product is proven now find new markets

Financing & support

High effort 6 months befor each fundraising

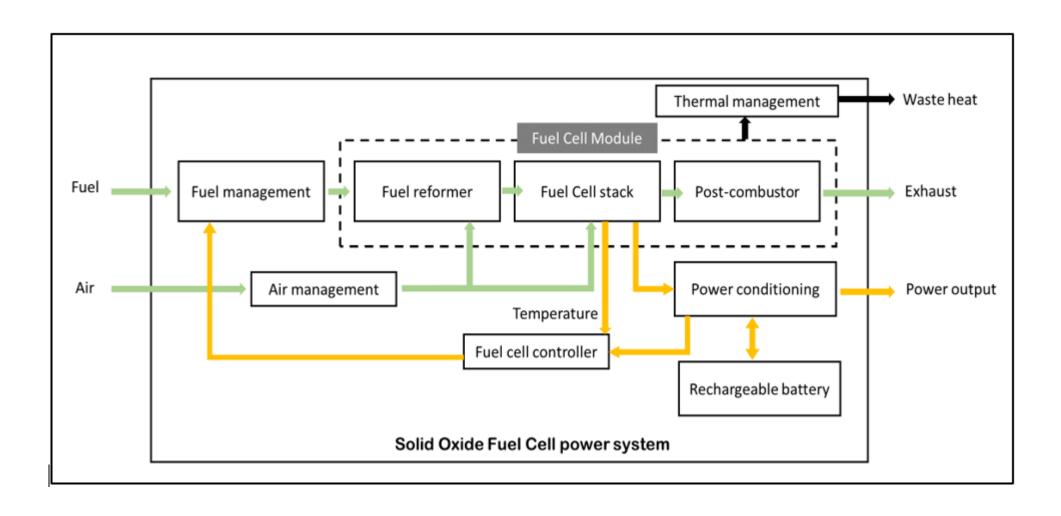


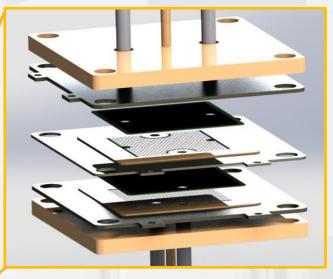
Before market study, a bit of technology explanation

Intro –Technology SOFC

The fuel (hydrogen gas) is continuously fed to the anode side and the oxidant (oxygen from the air) is supplied to the cathode side.

the electrons dissociate and reduce absorbed oxygen and consequently forms oxygen ions(O2 + 4e ←→ 2 O2−).


The ions diffuse through the electrolyte and oxidize the fuel at the anode side, where the oxygen vacancies are formed in consequence


The product of there action is thus electrons plus water steam (H2 + O2− ←→ H2O + 2e).

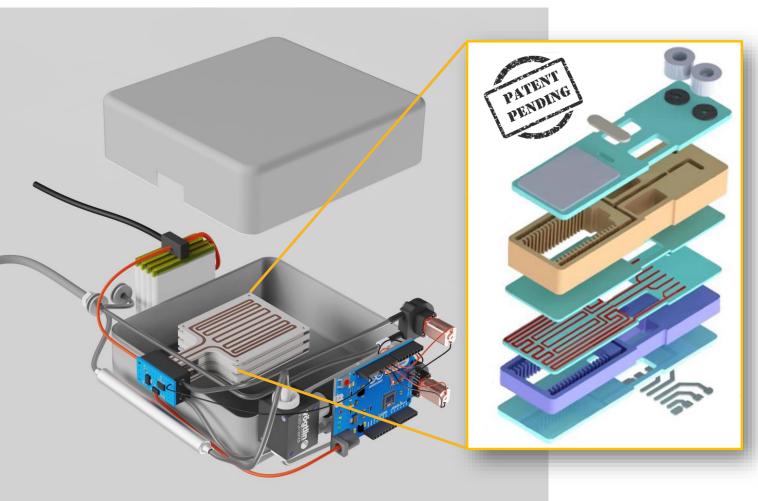
Technology to system

Efficient and Reliable

- √ <0.3% performance loss per 1000h
 </p>
- ✓ More than 50′000h operation

Fuel flexible

- ✓ Using inexpensive commercial fuel
- √ 60x more energy density than Li-Battery
- √ Easy adoption to hydrogen


High Operating Temperature

System Miniaturization?!

- Extremely costly
- Not scalable
- Unreliable

Secret sauce

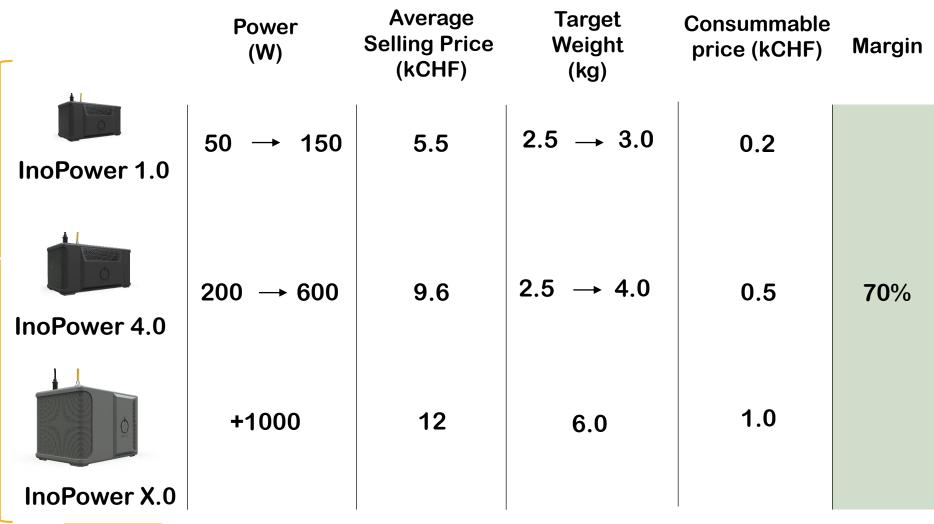
+10 years of research

- ✓ Patent pending design
- ✓ Innovative use of composite material
- ✓ Extended thermomechanical stability

80% Lighter

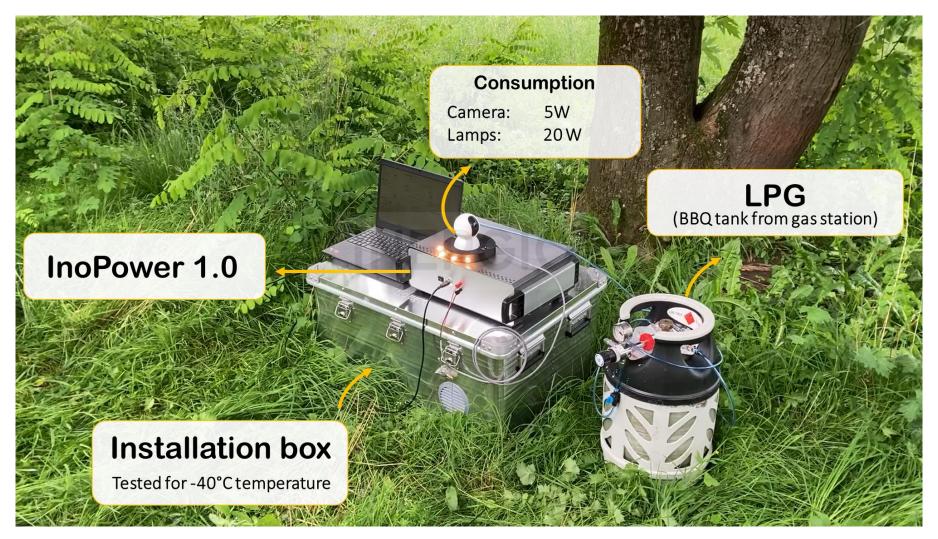
than most comparable fuel cells

Low CAPEX


No need of cleanroom or complex machinery

2 PCT applications

Customer offering



Consumable cartridge

(Sulfur removal - Replaced every 1-2 yrs)

O ANNEX-Video MVP

Watch the video here

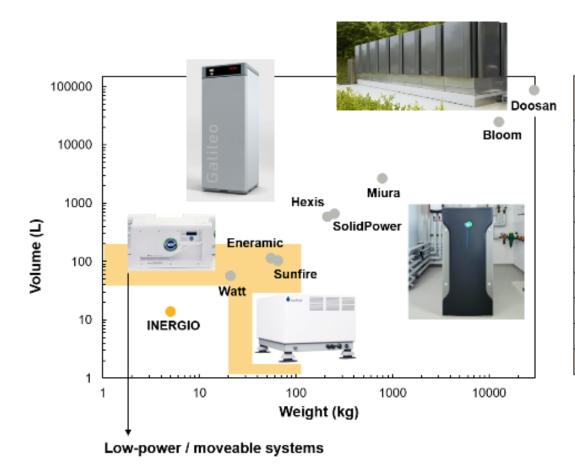

SOFC vs other fuel cells

Table 1 Comparative analysis of different fuel cell technologies

Type of Fuel cells	Conversion efficiency (%)	Operating temperature	System cycling	Fuel	Fuel energy density (kWh/kg)	Fuel Cost (\$/kWh)	Degradatio n rate	Type of electrolyte	Waste heat management	BoP complexity
SOFC	65	+650°C	Limited	Flexible	13.7	1-2	<1%/kh	Solid	No	Moderate
PEMFC	45	5-35°C	Yes	Sensititve to <5ppm impurity	0.5	8	<1%/kh	Hydrated polymer	Yes	High
DMFC	30	5-35°C	Yes	Sensititve to <5ppm impurity	5.5	9	>10%/kh	Wet polymer	Yes	Very high
AFC	50	<100°C	Yes	Sensitive to CO2 in air and fuel	0.5 + pure O2	8	3-5%/kh	Water based hydroxide	Yes	High
MCFC	50	+750°C	Limited	Flexible	13.7	1-2	<1%/kh	Corrosive liquid	No	Moderate

Inergio vs. other SOFC

SOFC	Weight (kg)	Volume (L)	Power density (W/kg)
Doosan	29000	88000	15.2
Bloom energy	12600	25000	15.9
Miura / Ceres	780	2700	5.4
SolidPower	250	670	4
Hexis	210	590	4.7
Sunfire	65	105	5.4
Watt	21	58	23.8
Eneramic	55	115	1.8
INERGIO	8	15	>100

Why making a smaller system?

Market study and selection

Look for competitors

Cost to step in

Success company

opportunities

Failed company

Risks

Free or crowded market

Market study and selection

Overall fuel cell potential market sorted according to power needed

Ultra portable systems In the pocket (<2W)	Portable systems Bag pack (10-500W)	Static high power (1-5kW)	Very high power (10-200kW)
Power bank smartphone	Weather stations	Electricity for home	Backup for servers
Monitoring systems	Security systems	Backup power	Electricity for neighborhood
	Monitoring systems		cars
	communications		
	Drones (delivery)		
	Backup power		

More detailed because our target. -> spent more time on it

Ultra portable (power bank)

- Lilliputian system tried to develop a mini power bank
- Founded in 2002 at MIT
- Raise total of 150M\$
- Bankrupt in 2014
- Never sold a product

Lilliputian systems – consumer market

	Liliputian	Power bank
price	300\$	40\$
Price refill	10\$	~0\$
autonomy	15	5

Consumer market

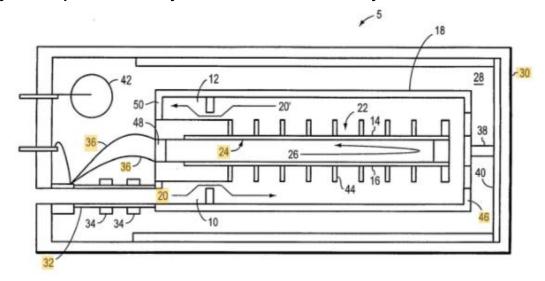
- Low cost
- High quantities
- Resistant to any missuses
- Competitor comes and copy fast

-> consumer market is not good

Lilliputian systems – other market?

- Low power sensors (<2W) are everywhere (road monitoring, weather, air quality, security, defense..)
- With bigger cartridge (20x) possible to get years of autonomy
- <1000CHF, industries can afford it

Why it didn't work?



Lilliputian systems – other market?

Technology limitations with scaling

Low power means:

- low consumption of BOP (balance of plant)
- low heat generated -> demand extremely good insulations (vacuum with reflective walls)
- Extremely low flow of fuel -> expensive sensors and controllers
- -> very complex, costly and not reliable system

Patent of fuel cell only

Ultra portable - conclusion

Consumer market too challenging

Too challenging for the technology, very risky

Market study and selection

Overall fuel cell potential market sorted according to power needed

Ultra portable systems In the pocket (<2W)	Portable systems Bag pack (10-500W)	Static high power (1-5kW)	Very high power (10-200kW)
Power bank smartphone	Weather stations	Electricity for home	Backup for servers
Monitoring systems	Security systems	Backup power	Electricity for neighborhood
	Monitoring systems		cars
	communications		
	Drones (delivery)		
	Backup power		

More detailed because our target. -> spent more time on it

O High power – household

Several companies are already selling SOFC to produce electricity and hot water for houses

- Competitors already here (do we have anything better?)
- Our technology (lightweight) doesn't bring an advantage
- Must guaranty 10 years operations
- ~30kCHF per systems -> require huge amount of money to develop the system only for material and trials.

O Very High power

Several companies are already implented

- Systems costs several millions \$
- Who would trust a startup for these kind of installations
- Need a to approach cities -> slow
- In Europe installation that works with gas are not very popular

However, interesting market for future

Market study and selection

Overall fuel cell potential market sorted according to power needed

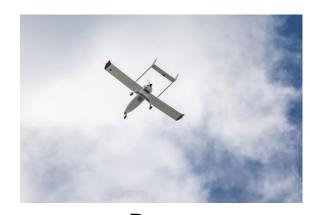
Portable systems Bag pack (10-500W)	Static high power (1-5kW)	Very high power (10-200kW)
Weather stations	Electricity for home	Backup for servers
Security systems	Backup power	Electricity for neighborhood
Monitoring systems		cars
communications		
Drones (delivery)		
Backup power		
	Bag pack (10-500W) Weather stations Security systems Monitoring systems communications Drones (delivery)	Bag pack (10-500W) Weather stations Security systems Monitoring systems communications Drones (delivery)

More detailed because our target. -> spent more time on it

O Portable mid power

Weather stations

Telecoms


Oil and gas monitoring

Leisure and entertainment

Surveillance

Drone

O Portable mid power

Weather stations

Telecoms

Oil and gas monitoring

Surveillance

Requirements

- Small & lightweight system
- Easy to install
- Long autonomy
- No Maintenance
- High reliability
- Weather independent
- Easy to refill

O Portable mid power

Leisure and entertainment

Requirements

- Small & lightweight system
- Easy to install
- Long autonomy
- No Maintenance
- High reliability
- Weather independent
- Easy to refill
- Low price (except for early adopters)
- Question about consumer safety norms

Drone

Requirements

- Small & ultra lightweight system
- Easy to install
- Long autonomy
- High reliability
- Weather independent
- Easy to refill
- Start/stop at each flight
- Regulation not set yet

O Portable mid power

Leisure and entertainment

Requirements

- Small & lightweight syste
- Easy to install
- Long autonomy
- No Mainternce
- High reliabil
- Weather inde dent
- Easy to refill
- Low price (exception early adopters)
- Question about consumer safety norms

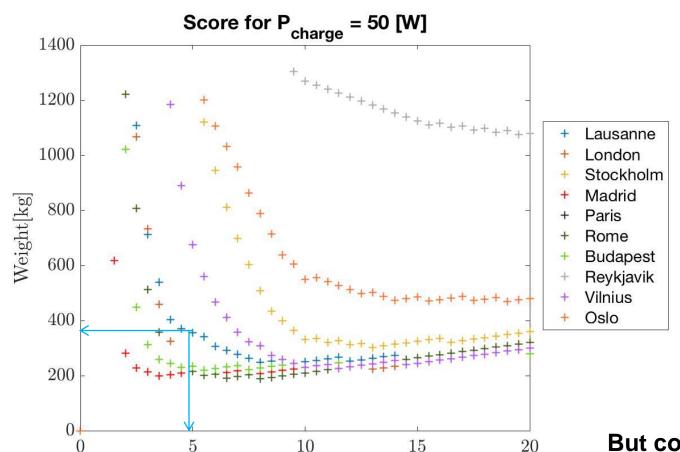
rone

Requirements

- Small & ultra lightweight system
- Easy to install
- Long autonomy
- High reliability
- Weather independent
- Easy to refill
- Start/stop at each flight
- Regulation not set yet

O Portable mid power actual solutions

Solar panels + battery


Genset + battery

Other fuel cells

O Solar panels + battery

 $S[m^2]$

To get **50W (very small laptop)** all the year, a huge installation is required

Even in southern countries

- Of course this is due to winter where solar panels produces only small amounts
- In summer a lot of energy is therefore lost

But could be interesting to combine with fuel cell

Analyze made with real data from different regions

O Genset + battery

- Installation is heavy
- CO2 emission is high
- Price is relatively higher (auto start genset)
- Noisy
- Maintenance (2x year if runs 10% of time)
- Low efficiency -> big reservoir or a lot of refueling needed
- Problem with charging the batteries because too powerful

3kW genset need 30kW batteries to work 10% of time -> = 600kg batteries

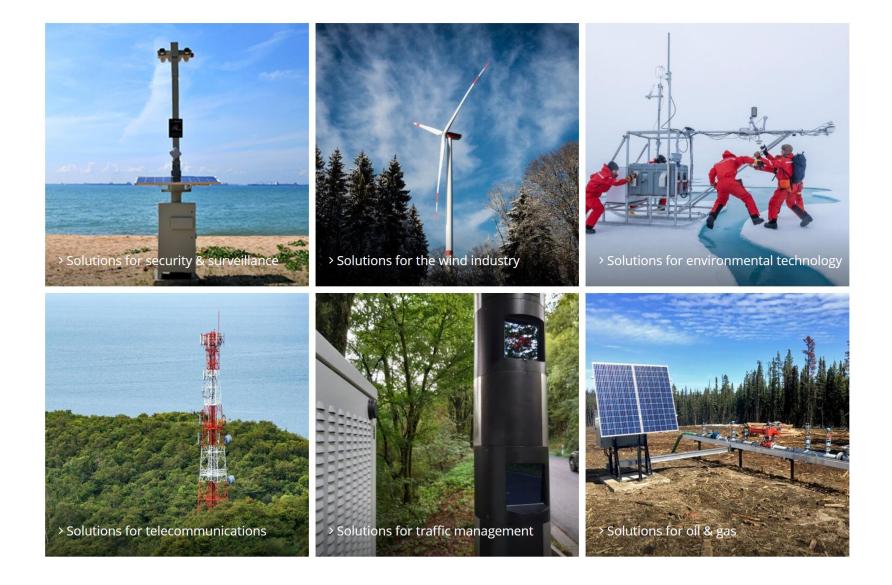
Other fuel cell companies

SFC Energy

- 424 M€ capitalization
- More than 50k units sold
- Present in all "off-grid" market
- Sell mainly Methanol Fuel cell

Sunfire

- Mainly focused on big electrolyzer
- have one product for "off-grid"
- Heavy 60kg without fuel


Other fuel cell companies

- we can analyze them
- Study their market
- Study the function implemented in their product
- Ask feedback from their customers
- Once we get visible, we can get better traction from investors or being bought by big companies

there is competitors

- We need to be sure that there is still space in this markets
- We must have a better product
- We must be sure they can't copy us fast because they don't need to develop their sales strategy

O SFC energy

O SFC energy

	EFOY 80	EFOY 150	EFOY Pro 900	EFOY Pro 1800	EFOY Pro 2800	EFOY Pro 12000 Duo	EFOY Hydrogen
	BO BO	Boy 150	1 SO	1800 I	2500	Fror Polescop	GFOY G Bustones
Max. output ¹	40 W	75 W	42 W	82 W	125 W	500 W	2500 W
Nominal voltage	12/24 V DC		12/24 V DC			24/48 V DC	48 V DC
Weight	6.5 kg 14.3 lbs	6.9 kg 15.2 lbs	6.5 kg 14.3 lbs	7.2 kg 15.9 lbs	7.8 kg 17.2 lbs	32 kg 70.5 lbs	27 kg 59.5 lbs
Dimensions ² L x W x H	448 x 198 x 275 mm 17.6 x 7.8 x 10.8 in	448 x 198 x 275 mm 17.6 x 7.8 x 10.8 in	448 x 198 x 275 mm 17.6 x 7.8 x 10.8 in	448 x 198 x 275 mm 17.6 x 7.8 x 10.8 in	448 x 198 x 275 mm 17.6 x 7.8 x 10.8 in	640 x 441 x 310 mm 25.2 x 17.4 x 12.2 in	536 x 483 x 311 mm 21.1 x 19 x 12.2 in
Connectable fuel cartridges / gas cylinders	1 (up to 8 with EFOY Fuel Manager)		1 (up to 8 with EFOY Fuel Manager)			2 (up to 4 with DCS1)	The system has one connection. Several H ₂ gas cylinders can be connected to each other.
Operating Temperature	-20 °C bis +40 °C -4 °F to +104 °F		-20 °C bis +50 °C -4 °F to +122 °F			-20 °C bis +50 °C -4 °F to +122 °F	-33 °C bis +50 °C -27.4 °F to +122 °F
Fuel	Methanol in EFOY Fuel cartridges		Methanol in EFOY Fuel cartridges			Methanol in EFOY Fuel cartridges	Hydrogen
Performance classes of the EFOY fuel cells	40 W	75 W	42 W	82 W	125 W	3 KW	50 KW
	Temporary applications		Continuous operation			For higher performance	For higher performance

^{1.} The output power decreases with the operating hours.

^{2.} Dimensions without 19" frame. All technical data at test conditions of 20° C.

O SFC energy

Technology limitation

- Work only on pure methanol -> must be bought at sfc or direct reseller
- Fuel cell work at ambient temperature without extreme
- Can't work under 0°C without cabinet
- Lose 33% power in 6000 hours (250 days)
- Efficiency is relatively low due to big BOP

Feedback from SFC customers

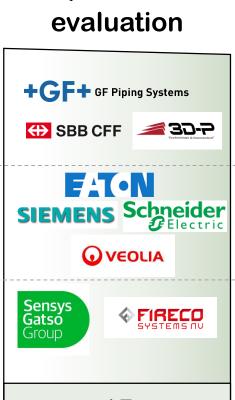
- They would be much happier if they could use commercial fuel
- They don't like the water that flow out of the system.
- Water can freeze and clog in winter
- System is dead too fast

However, They still use this because it's the best solution

Off-grid markets conclusion

-> Off grid markets seems big enough and energy problem is not solved

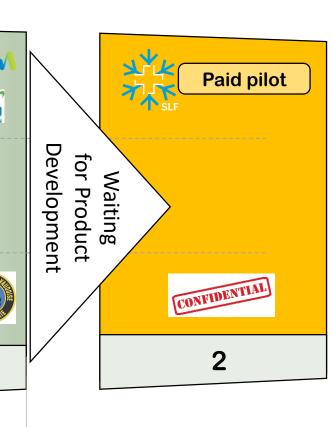
Client Acquisition and Validated Prospects


Off-grid industries

Integrators

Security

Total n°



Qualified /

Interested /

Contract

Yearly revenue

Potential N° Units

Interest letters

780

21

230k CHF

Sales strategy

- First channel
- High margin / low scalability

Integrators / distributor

- 2nd step after product launch
- 30% distributor margin
- Scalable distribution

What are the customers saying?

"We see a high potential in **fuel cells for our systems, as they are** clearly superior to diesel generators in terms of maintenance and energy efficiency. [...] We are very interested in a system allowing harsher environmental conditions [compared to SFC products], using available fuels."

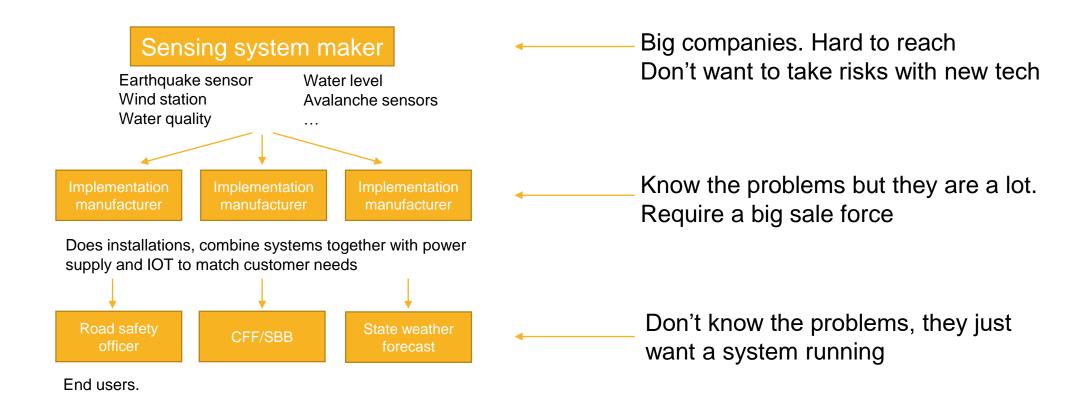
Geopraevent, Zürich, Switzerland

"Fuel cell is becoming a standard in mobile CCTV systems as they give very good operational flexibility. We're targeting 200-400 units per year using fuel cells. SFC is an issue because of the dependence to their fuel (methanol) and lifetime. If INERGIO reaches 8-10k hours with a power loss under 20-30%, you're definitely into the game."

"We have a strong interest in your product to power our surveillance systems in places without electricity. We have some units <u>from SFC</u> but we have a problem with **the high quantity of water at the exhaust** and also **availability of the fuel,** we are potentially looking for <u>5-6 canton Vaud only</u>"

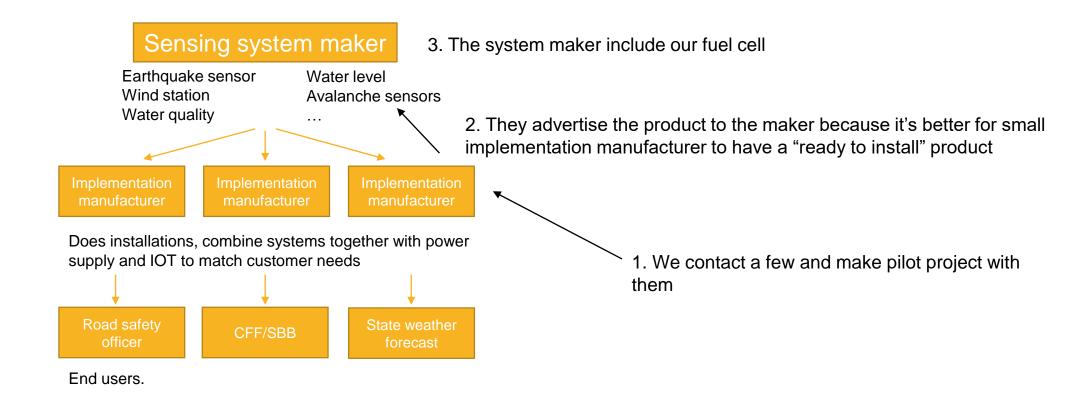
Police Cantonale Vaudoise, Lausanne, Switzerland

O Market potential


		Current focus			
	Power (W)	Off-grid industries	Consumer & leisure	Autonomous robotics	Auxiliary and backup power
	25 - 100	✓	✓		
	200-600	✓		✓	✓
	N° of units	105'000	165'000	66'000	93'000
	Yearly SAM [CHF]	1'000 M	700M	760M	1'800M
	Go to market	2021	2023	2025	2026
	Leads	58	12	7	
	Lols	19		2	

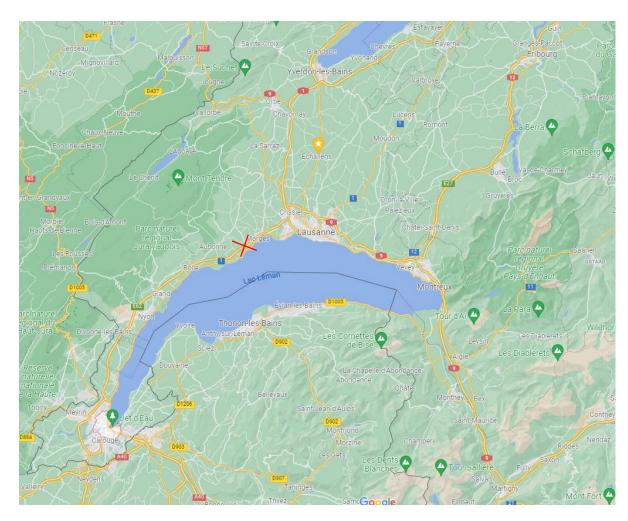
+430'000 units

+4.2 Bn CHF



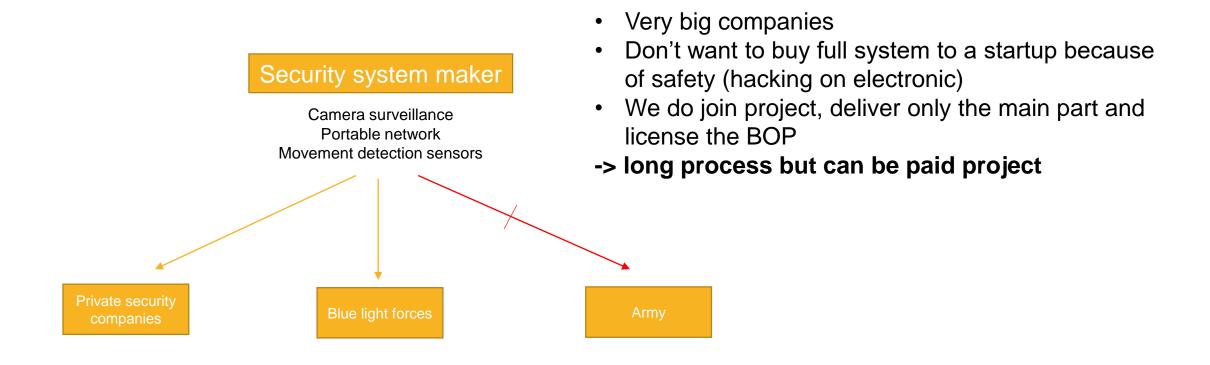
"off-grid" - Sensing market structure

"off-grid" - Sensing market structure



"off-grid" - Example

- Hole on the rails between Geneva and Lausanne
- No train for 2 day, perturbation for weeks
- 60k peoples travel everyday
- 20 worker, a provisory bridge were needed



Normally sensor are placed on tracks during construction. But often the get shut down because of not reliable power supply

O

"off-grid" - Security defense

off-grid" — ideal strategy

- Start paid projects with security market
 - -> finance our research
- In parallel we make pilots with small customers to validate our product
- The bigs see our validation and start to buy
- Paid project start to get finilized and security market get opened
- Investigate leisure market
- Step in drone market when emerging

-> our business team will grow from 2022

Thank you